Multi-Modal Segmentation of 3D Brain Scans Using Neural Networks

نویسندگان

چکیده

Anatomical segmentation of brain scans is highly relevant for diagnostics and neuroradiology research. Conventionally, performed on T 1 -weighted MRI scans, due to the strong soft-tissue contrast. In this work, we report a comparative study automated, learning-based various other contrasts also computed tomography (CT) investigate anatomical information contained in these imaging modalities. A large database total 853 MRI/CT enables us train convolutional neural networks (CNNs) segmentation. We benchmark CNN performance four different modalities 27 substructures. For each modality separate based common architecture. find average Dice scores 86.7 ± 4.1% ( MRI), 81.9 6.7% (fluid-attenuated inversion recovery 80.8 6.6% (diffusion-weighted MRI) 80.7 8.2% (CT), respectively. The assessed relative labels obtained using widely-adopted FreeSurfer software package. pipeline uses dropout sampling identify corrupted input or low-quality segmentations. Full 3D volumes with more than 2 million voxels requires <1s processing time graphical unit.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

ilastik for Multi-modal Brain Tumor Segmentation

We present the application of ilastik, the open source interactive learning and segmentation toolkit, for brain tumor segmentation in multi-modal magnetic resonance images. Even without utilizing the interactive nature of the toolkit, we are able to achieve Dice scores comparable to human inter-rater variability and are ranked in the top-5 results for the BraTS 2013 challenge data set, where no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Neurology

سال: 2021

ISSN: ['1664-2295']

DOI: https://doi.org/10.3389/fneur.2021.653375